Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256205

RESUMO

Powdery mildew caused by Podosphaera xanthii is a serious fungal disease which causes severe damage to melon production. Unlike with chemical fungicides, managing this disease with resistance varieties is cost effective and ecofriendly. But, the occurrence of new races and a breakdown of the existing resistance genes poses a great threat. Therefore, this study aimed to identify the resistance locus responsible for conferring resistance against P. xanthii race KN2 in melon line IML107. A bi-parental F2 population was used in this study to uncover the resistance against race KN2. Genetic analysis revealed the resistance to be monogenic and controlled by a single dominant gene in IML107. Initial marker analysis revealed the position of the gene to be located on chromosome 2 where many of the resistance gene against P. xanthii have been previously reported. Availability of the whole genome of melon and its R gene analysis facilitated the identification of a F-box type Leucine Rich Repeats (LRR) to be accountable for the resistance against race KN2 in IML107. The molecular marker developed in this study can be used for marker assisted breeding programs.


Assuntos
Ascomicetos , Melhoramento Vegetal , Genes Dominantes , Erysiphe
2.
Plant Pathol J ; 39(5): 494-503, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37817495

RESUMO

Xanthomonas campestris pv. campestris (Xcc) is a plant pathogen of Brassica crops that causes black rot disease throughout the world. At present, 11 physiological races of Xcc (races 1-11) have been reported. The conventional method of using differential cultivars for Xcc race detection is not accurate and it is laborious and time-consuming. Therefore, the development of specific molecular markers has been used as a substitute tool because it offers an accurate and reliable result, particularly a quick diagnosis of Xcc races. Previously, our laboratory has successfully developed race-specific molecular markers for Xcc races 1-6. In this study, specific molecular markers to identify Xcc race 7 have been developed. In the course of study, whole genome sequences of several Xcc races, X. campestris pv. incanae, X. campestris pv. raphani, and X. campestris pv. vesicatoria were aligned to identify variable regions like sequence-characterized amplified regions and insertions and deletions specific to race 7. Primer pairs were designed targeting these regions and validated against 22 samples. The polymerase chain reaction analysis revealed that three primer pairs specifically amplified the DNA fragment corresponding to race 7. The obtained finding clearly demonstrates the efficiency of the newly developed markers in accurately detecting Xcc race 7 among the other races. These results indicated that the newly developed marker can successfully and rapidly detect Xcc race 7 from other races. This study represents the first report on the successful development of specific molecular markers for Xcc race 7.

3.
Biochem Genet ; 61(2): 451-470, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36057909

RESUMO

Glucosinolates (GSLs) and GSL-associated genes are receiving increasing attention from molecular biologists due to their multifunctional properties. GSLs are secondary metabolites considered to be highly active in most Brassica species. Their importance has motivated the discovery and functional analysis of the GSLs and GSL hydrolysis products involved in disease development in brassicas and other plants. Comprehensive knowledge of the GSL content of Brassica species and the molecular details of GSL-related genes will help elucidate the molecular control of this plant defense system. This report provides an overview of the current status of knowledge on GSLs, GSL biosynthesis, as well as hydrolysis related genes, and GSL hydrolysis products that regulate fungal, bacterial, and insect resistance in cabbage and other brassicas.


Assuntos
Brassica , Brassica/genética , Brassica/metabolismo , Glucosinolatos/genética , Glucosinolatos/metabolismo
4.
Plant Pathol J ; 36(5): 418-427, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33082726

RESUMO

Xanthomonas campestris pv. campestris (Xcc), the pathogen of black rot which is the most destructive disease of Brassica vegetables throughout the world. Here, we reported two novel sequence-characterized amplified region (SCAR) markers (i.e., XccR6-60 and XccR6-67) for the detection of Xcc race 6 via re-alignment of the complete genome sequences of Xcc races/strains/pathovars. The specificity of SCAR primer sets was verified by mean of PCR amplification using the genomic DNA template of Xcc races/strains/pathovars and two other plant infecting bacterial strains. The PCR result revealed that the XccR6-60 and XccR6-67 primer sets amplified 692-bp and 917-bp DNA fragments, respectively, specifically from race 6, while no visible amplification was detected in other samples. In addition, the SCAR primers were highly sensitive and can detect from a very low concentration of genomic DNA of Xcc race 6. However, the complete genome sequence of Xcc race 6 is not yet publicly available. Therefore, the cloning and sequencing of XccR6-60 and XccR6-67 fragments from race 6 provide more evidence of the specificity of these markers. These results indicated that the newly developed SCAR markers can successfully, effectively and rapidly detect Xcc race 6 from other Xcc races/strains/pathovars as well as other plant pathogenic bacteria. This is the first report for race-specific molecular markers for Xcc race 6.

5.
Plants (Basel) ; 9(9)2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32872597

RESUMO

Cabbage (Brassica oleracea var. capitata) is an economically important crop in the family Brassicaceae. Black rot disease is a top ranked cabbage disease, which is caused by Xanthomonas campestris pv. campestris (Xcc) and may reduce 50% crop loss. Therefore, we need a clear understanding of black rot disease resistance for sustainable disease management. The secondary metabolites, like Glucosinolate (GSL) presents in Brassica species, which plays a potential role in the defense mechanism against pathogens. However, there is little known about GSL-regulated resistance mechanisms and GSL biosynthesis and the breakdown related gene expression after black rot disease infection in cabbage. In this study, relative expression of 43 biosynthetic and breakdown related GSLs were estimated in the black rot resistant and susceptible cabbage lines after Xcc inoculation. Ten different types of GSL from both aliphatic and indolic groups were identified in the contrasting cabbage lines by HPLC analysis, which included six aliphatic and four indolic compounds. In the resistant line, nine genes (MYB122-Bol026204, MYB34-Bol017062, AOP2-Bo9g006240, ST5c-Bol030757, CYP81F1-Bol017376, CYP81F2-Bol012237, CYP81F4-Bol032712, CYP81F4-Bol032714 and PEN2-Bol030092) showed consistent expression patterns. Pearson's correlation coefficient showed positive and significant association between aliphatic GSL compounds and expression values of ST5c-Bol030757 and AOP2-Bo9g006240 genes as well as between indolic GSL compounds and the expression of MYB34-Bol017062, MYB122-Bol026204, CYP81F2-Bol012237, CYP81F4-Bol032712 and CYP81F4-Bol032714 genes. This study helps in understanding the role of GSL biosynthesis and breakdown related genes for resistance against black rot pathogen in cabbage, which could be further confirmed through functional characterization either by overexpression or knock-out mutation.

6.
3 Biotech ; 10(8): 353, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32760641

RESUMO

Understanding the genetic determinants are essential for improving the fruit quality traits of strawberry. In this study, we focused on mapping the loci for fruit-length (FL), -diameter (FD), -weight (FW) and -soluble solid content (SSC) using the genome-wide single nucleotide polymorphisms (SNPs) identified via ddRAD-sequencing of the F1 population raised from Maehyang (♀) X Festival (♂). A total of 12,698 high quality SNPs were identified of which 1554 SNPs that showed significant Mendelian segregation (p < 0.05) were mapped to 53 linkage groups (LG) spanning a total of 2937.93 cM with an average marker density of 2.14 cM/locus. Six QTLs for FL and four QTLs for each of FD, FW and SSC were identified that explained 24-35%, 21-42%, 24-54% and 23-50% of overall phenotypic variations, respectively. The genes that lie within these QTL regions were extracted and discussed thoroughly. In addition, a high resolution melting marker (MF154) were designed based on the SNP A1723G of the UDP-glucose 4-epimerase GEPI48-like gene FAN_iscf00021287. The marker detected the high vs low sugar containing F1 plants and commercial cultivars with 81.39% and 86.95% detection accuracy, respectively. These SNPs, linkage map, QTLs and candidate genes will be helpful in understanding and improving the fruit quality traits of strawberry.

7.
Int J Mol Sci ; 21(15)2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756478

RESUMO

Auxins play a pivotal role in clubroot development caused by the obligate biotroph Plasmodiophora brassicae. In this study, we investigated the pattern of expression of 23 genes related to auxin biosynthesis, reception, and transport in Chinese cabbage (Brassica rapa) after inoculation with P. brassicae. The predicted proteins identified, based on the 23 selected auxin-related genes, were from protein kinase, receptor kinase, auxin responsive, auxin efflux carrier, transcriptional regulator, and the auxin-repressed protein family. These proteins differed in amino acids residue, molecular weights, isoelectric points, chromosomal location, and subcellular localization. Leaf and root tissues showed dynamic and organ-specific variation in expression of auxin-related genes. The BrGH3.3 gene, involved in auxin signaling, exhibited 84.4-fold increase in expression in root tissues compared to leaf tissues as an average of all samples. This gene accounted for 4.8-, 2.6-, and 5.1-fold higher expression at 3, 14, and 28 days post inoculation (dpi) in the inoculated root tissues compared to mock-treated roots. BrNIT1, an auxin signaling gene, and BrPIN1, an auxin transporter, were remarkably induced during both cortex infection at 14 dpi and gall formation at 28 dpi. BrDCK1, an auxin receptor, was upregulated during cortex infection at 14 dpi. The BrLAX1 gene, associated with root hair development, was induced at 1 dpi in infected roots, indicating its importance in primary infection. More interestingly, a significantly higher expression of BrARP1, an auxin-repressed gene, at both the primary and secondary phases of infection indicated a dynamic response of the host plant towards its resistance against P. brassicae. The results of this study improve our current understanding of the role of auxin-related genes in clubroot disease development.


Assuntos
Brassica rapa/genética , Ácidos Indolacéticos/metabolismo , Doenças das Plantas/genética , Plasmodioforídeos/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Brassica rapa/crescimento & desenvolvimento , Brassica rapa/microbiologia , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Membrana Transportadoras/genética , Doenças das Plantas/microbiologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plasmodioforídeos/parasitologia , Transdução de Sinais/genética
8.
Funct Plant Biol ; 48(1): 103-118, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32780986

RESUMO

Clubroot is a devastating disease of Brassicaceae caused by the biotrophic protist Plasmodiophora brassicae. The progression of clubroot disease is modulated by the glucosinolate (GSL) profile of the host plant. GSL is hydrolysed by the enzyme myrosinase upon cell disruption and gives rise to metabolites like isothiocyanate, nitriles, thiocyanates, epithionitriles and oxazolidines. Some of these metabolites play important roles in the plant's defence mechanism. We identified 13 Myrosinase (Myro) and 28 Myrosinase-Binding Protein-like (MBP) genes from Brassica oleracea L. using a comparative genomics approach and characterised them through in silico analyses. We compared the expression patterns of these genes in a clubroot-susceptible line and a resistant line following inoculation with P. brassicae. Two BolMyro and 12 BolMBP genes were highly expressed in the susceptible line, whereas only one BolMyro and five BolMBP genes were highly expressed in the resistant line. Principal component analysis confirmed that specific GSL profiles and gene expression were modulated due to pathogen infection. Plants with higher levels of neoglucobrassicin, glucobrassicin and methooxyglucobrassicin produced disease symptoms and formed galls, whereas, plants with higher levels of sinigrin, hydroxyglucobrassicin and progoitrin produced less symptoms with almost no galls. Our results provide insights into the roles of Myro and MBP genes in GSL hydrolysis during P. brassicae infection, which will help for developing clubroot resistant cabbage lines.


Assuntos
Brassica , Plasmodioforídeos , Brassica/genética , Expressão Gênica , Glucosinolatos , Glicosídeo Hidrolases , Doenças das Plantas/genética
9.
BMC Genet ; 21(1): 80, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32698865

RESUMO

BACKGROUND: Bacterial fruit blotch (BFB), a disease caused by Acidovorax citrulli, results in significant economic losses in melon. The causal QTLs and genes for resistance to this disease have yet to be identified. Resistance (R)-genes play vital roles in resistance to plant diseases. Since the complete genome sequence of melon is available and genome-wide identification of R-genes has been performed for this important crop, comprehensive expression profiling may lead to the identification of putative candidate genes that function in the response to BFB. RESULTS: We identified melon accessions that are resistant and susceptible to BFB through repeated bioassays and characterized all 70 R-genes in melon, including their gene structures, chromosomal locations, domain organizations, motif distributions, and syntenic relationships. Several disease resistance-related domains were identified, including NBS, TIR, LRR, CC, RLK, and DUF domains, and the genes were categorized based on the domains of their encoded proteins. In addition, we profiled the expression patterns of the genes in melon accessions with contrasting levels of BFB resistance at 12 h, 1 d, 3 d, and 6 d after inoculation with A. citrulli. Six R-genes exhibited consistent expression patterns (MELO3C023441, MELO3C016529, MELO3C022157, MELO3C022146, MELO3C025518, and MELO3C004303), with higher expression levels in the resistant vs. susceptible accession. CONCLUSION: We identified six putative candidate R-genes against BFB in melon. Upon functional validation, these genes could be targeted for manipulation via breeding and biotechnological approaches to improve BFB resistance in melon in the future.


Assuntos
Comamonadaceae/patogenicidade , Cucurbitaceae/genética , Resistência à Doença/genética , Genes de Plantas , Doenças das Plantas/genética , Cucurbitaceae/microbiologia , Frutas , Doenças das Plantas/microbiologia
10.
Int J Mol Sci ; 21(11)2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32486099

RESUMO

The obligate biotroph Plasmodiophora brassicae causes clubroot disease in oilseeds and vegetables of the Brassicaceae family, and cytokinins play a vital role in clubroot formation. In this study, we examined the expression patterns of 17 cytokinin-related genes involved in the biosynthesis, signaling, and degradation in Chinese cabbage inoculated with the Korean pathotype group 4 isolate of P. brassicae, Seosan. This isolate produced the most severe clubroot symptoms in Chinese cabbage cultivar "Bullam-3-ho" compared to three other Korean geographical isolates investigated. BrIPT1, a cytokinin biosynthesis gene, was induced on Day 1 and Day 28 in infected root tissues and the upregulation of this biosynthetic gene coincided with the higher expression of the response regulators BrRR1, on both Days and BrRR6 on Day 1 and 3. BrRR3 and 4 genes were also induced during gall enlargement on Day 35 in leaf tissues. The BrRR4 gene, which positively interact with phytochrome B, was consistently induced in leaf tissues on Day 1, 3, and 14 in the inoculated plants. The cytokinin degrading gene BrCKX3-6 were induced on Day 14, before gall initiation. BrCKX2,3,6 were induced until Day 28 and their expression was downregulated on Day 35. This insight improves our current understanding of the role of cytokinin signaling genes in clubroot disease development.


Assuntos
Citocininas/metabolismo , Perfilação da Expressão Gênica , Doenças das Plantas/genética , Plasmodioforídeos/genética , Plasmodioforídeos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Brassica/genética , Brassica/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Regulação para Baixo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta , Raízes de Plantas , República da Coreia , Transdução de Sinais
11.
Genes (Basel) ; 11(2)2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32093120

RESUMO

Bacterial fruit blotch (BFB) causes losses in melon marketable yield. However, until now, there has been no information about the genetic loci responsible for resistance to the disease or their pattern of inheritance. We determined the inheritance pattern of BFB resistance from a segregating population of 491 F2 individuals raised by crossing BFB-resistant (PI 353814) and susceptible (PI 614596) parental accessions. All F1 plants were resistant to Acidovorax citrulli strain KACC18782, and F2 plants segregated with a 3:1 ratio for resistant and susceptible phenotypes, respectively, in a seedling bioassay experiment, indicating that BFB resistance is controlled by a monogenic dominant gene. In an investigation of 57 putative disease-resistance related genes across the melon genome, only the MELO3C022157 gene (encoding TIR-NBS-LRR domain), showing polymorphism between resistant and susceptible parents, revealed as a good candidate for further investigation. Cloning, sequencing and quantitative RT-PCR expression of the polymorphic gene MELO3C022157 located on chromosome 9 revealed multiple insertion/deletions (InDels) and single nucleotide polymorphisms (SNPs), of which the SNP A2035T in the second exon of the gene caused loss of the LRR domain and truncated protein in the susceptible accession. The InDel marker MB157-2, based on the large (504 bp) insertion in the first intron of the susceptible accession, was able to distinguish resistant and susceptible accessions among 491 F2 and 22 landraces/inbred accessions with 98.17% and 100% detection accuracy, respectively. This novel PCR-based, co-dominant InDel marker represents a practical tool for marker-assisted breeding aimed at developing BFB-resistant melon accessions.


Assuntos
Comamonadaceae/genética , Cucumis melo/genética , Resistência à Doença/genética , Mapeamento Cromossômico/métodos , Comamonadaceae/patogenicidade , Cucumis melo/microbiologia , Frutas/microbiologia , Mutação INDEL/genética , Padrões de Herança/genética , Fenótipo , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único/genética
12.
Plants (Basel) ; 8(12)2019 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-31817976

RESUMO

The inheritance and causal loci for resistance to blackleg, a devastating disease of Brassicaceous crops, are yet to be known in cabbage (Brassica oleracea L.). Here, we report the pattern of inheritance and linked molecular marker for this trait. A segregating BC1 population consisting of 253 plants was raised from resistant and susceptible parents, L29 (♀) and L16 (♂), respectively. Cotyledon resistance bioassay of BC1 population, measured based on a scale of 0-9 at 12 days after inoculation with Leptosphaeria maculans isolate 03-02 s, revealed the segregation of resistance and ratio, indicative of dominant monogenic control of the trait. Investigation of potential polymorphism in the previously identified differentially expressed genes within the collinear region of 'B. napus blackleg resistant loci Rlm1' in B. oleracea identified two insertion/deletion (InDel) mutations in the intron and numerous single nucleotide polymorphisms (SNPs) throughout the LRR-RLK gene Bol040029, of which six SNPs in the first exon caused the loss of two LRR domains in the susceptible line. An InDel marker, BLR-C-InDel based on the InDel mutations, and a high resolution melting (HRM) marker, BLR-C-2808 based on the SNP C2808T in the second exon were developed, which predicated the resistance status of the BC1 population with 80.24%, and of 24 commercial inbred lines with 100% detection accuracy. This is the first report of inheritance and molecular markers linked with blackleg resistance in cabbage. This study will enhance our understanding of the trait, and will be helpful in marker assisted breeding aiming at developing resistant cabbage varieties.

13.
Int J Mol Sci ; 20(11)2019 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-31159510

RESUMO

Acidovorax citrulli (A. citrulli) strains cause bacterial fruit blotch (BFB) in cucurbit crops and affect melon significantly. Numerous strains of the bacterium have been isolated from melon hosts globally. Strains that are aggressively virulent towards melon and diagnostic markers for detecting such strains are yet to be identified. Using a cross-inoculation assay, we demonstrated that two Korean strains of A. citrulli, NIHHS15-280 and KACC18782, are highly virulent towards melon but avirulent/mildly virulent to the other cucurbit crops. The whole genomes of three A. citrulli strains isolated from melon and three from watermelon were aligned, allowing the design of three primer sets (AcM13, AcM380, and AcM797) that are specific to melon host strains, from three pathogenesis-related genes. These primers successfully detected the target strain NIHHS15-280 in polymerase chain reaction (PCR) assays from a very low concentration of bacterial gDNA. They were also effective in detecting the target strains from artificially infected leaf, fruit, and seed washing suspensions, without requiring the extraction of bacterial DNA. This is the first report of PCR-based markers that offer reliable, sensitive, and rapid detection of strains of A. citrulli causing BFB in melon. These markers may also be useful in early disease detection in the field samples, in seed health tests, and for international quarantine purposes.


Assuntos
Comamonadaceae/isolamento & purificação , Cucurbitaceae/microbiologia , Doenças das Plantas/microbiologia , Comamonadaceae/genética , Produtos Agrícolas/microbiologia , DNA Bacteriano/análise , DNA Bacteriano/genética , Frutas/microbiologia , Genoma Bacteriano , Reação em Cadeia da Polimerase
14.
Genome ; 62(8): 513-526, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31132326

RESUMO

Purple ornamental cabbage (Brassica oleracea var. acephala) is a popular decorative plant, cultivated for its colorful leaf rosettes that persist in cool weather. It is characterized by green outer leaves and purple inner leaves, whose purple pigmentation is due to the accumulation of anthocyanin pigments. Phytohormones play important roles in anthocyanin biosynthesis in other species. Here, we identified 14 and 19 candidate genes putatively involved in abscisic acid (ABA) and ethylene (ET) biosynthesis, respectively, in B. oleracea. We determined the expression patterns of these candidate genes by reverse-transcription quantitative PCR (RT-qPCR). Among candidate ABA biosynthesis-related genes, the expressions of BoNCED2.1, BoNCED2.2, BoNCED6, BoNCED9.1, and BoAAO3.2 were significantly higher in purple compared to green leaves. Likewise, most of the ET biosynthetic genes (BoACS6, BoACS9.1, BoACS11, BoACO1.1, BoACO1.2, BoACO3.1, BoACO4, and BoACO5) had significantly higher expression in purple compared to green leaves. Among these genes, BoNCED2.1, BoNCED2.2, BoACS11, and BoACO4 showed particularly strong associations with total anthocyanin content of the purple inner leaves. Our results suggest that ABA and ET might promote the intense purple pigmentation of the inner leaves of purple ornamental cabbage.


Assuntos
Ácido Abscísico/metabolismo , Antocianinas/biossíntese , Brassica/genética , Etilenos/biossíntese , Pigmentação/genética , Proteínas de Plantas/genética , Antocianinas/genética , Brassica/metabolismo , Proteínas de Plantas/metabolismo
15.
BMC Genet ; 20(1): 42, 2019 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-31029104

RESUMO

BACKGROUND: Cabbage (Brassica oleracea var. capitata) is popular worldwide for consumption as a leafy vegetable. Premature flowering is triggered by low temperature, and deteriorates quality of cabbage as vegetable. In general, growers prefer late-flowering varieties to assure good quality compact head. Here, we report BoFLC1.C9 as a gene with clear sequence variation between cabbage lines with different flowering times, and proposed as molecular marker to characterize early- and late-flowering cabbage lines. RESULTS: We identified sequence variation of 67 bp insertions in intron 2, which were contributed in flowering time variation between two inbred lines through rapid down-regulation of the BoFLC1.C9 gene in early-flowering line compared to late-flowering one upon vernalization. One set of primer 'F7R7' proposed as marker, of which was explained with 83 and 80% of flowering time variation in 141 F2 individuals and 20 commercial lines, respectively. CONCLUSIONS: This F7R7 marker could be used as genetic tools to characterize flowering time variation and to select as well to develop early- and late-flowering cabbage cultivars.


Assuntos
Brassica/genética , Flores/genética , Genes de Plantas , Variação Genética , Genótipo , Desenvolvimento Vegetal/genética , Brassica/classificação , Regulação da Expressão Gênica de Plantas , Íntrons , Filogenia , Polimorfismo Genético
16.
J Microbiol Biotechnol ; 29(5): 785-793, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31030456

RESUMO

Black rot caused by Xanthomonas campestris pv. campestris (Xcc) is the most damaging disease in Brassica crops around the world. In this study, we developed a molecular marker specific to Xcc race 5. To do this, the available whole genome sequences of Xcc races/strains and Xc subspecies were aligned and identified a highly variable genomic region (XccR5-89.2). Subsequently, a primer set covering the 'XccR5-89.2' region was designed and tested against the genomic DNA of Xcc races/strains, Xc subspecies and other plant-infecting bacterial strains (Pseudomonas syringae pv. maculicola and Erwinia carotovora subsp. carotovora). The results showed that the 'XccR5-89.2' primer pair amplified a 2,172-bp fragment specific to Xcc race 5. Moreover, they also amplified a 1,515-bp fragment for Xcc race 1 and an over 3,000-bp fragment for Xcc race 3. However, they did not amplify any fragments from the remaining Xcc races/strains, subspecies or other bacterial strains. The 'XccR5-89.2' primer pair was further PCR amplified from race-unknown Xcc strains and ICMP8 was identified as race 5 among nine race-unknown Xcc strains. Further cloning and sequencing of the bands amplified from race 5 and ICMP8 with 'XccR5-89.2' primers revealed both carrying identical sequences. The results showed that the 'XccR5-89.2' marker can effectively and proficiently detect, and identify Xcc race 5 from Xcc races/strains, subspecies and other plant-infecting bacteria. To our knowledge, this is the first report for an Xcc race 5-specific molecular marker.


Assuntos
Genes Bacterianos/genética , Doenças das Plantas/microbiologia , Xanthomonas campestris/genética , Xanthomonas campestris/patogenicidade , Proteínas de Bactérias , Clonagem Molecular , DNA Bacteriano/genética , Endopeptidases , Marcadores Genéticos , Genoma Bacteriano , Pectobacterium carotovorum/genética , Pectobacterium carotovorum/patogenicidade , Reação em Cadeia da Polimerase/métodos , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidade , Alinhamento de Sequência , Sequenciamento Completo do Genoma
17.
Sci Rep ; 9(1): 3275, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824841

RESUMO

Recent advances in high-throughput genome sequencing technologies are now making the genetic dissection of the complex genome of cultivated strawberry easier. We sequenced Maehyang (short-day cultivar) × Albion (day-neutral cultivar) crossing populations using double digest restriction-associated DNA (ddRAD) sequencing technique that yielded 978,968 reads, 80.2% of which were aligned to strawberry genome allowing the identification of 13,181 high quality single nucleotide polymorphisms (SNPs). Total 3051 SNPs showed Mendelian segregation in F1, of which 1268 were successfully mapped to 46 linkage groups (LG) spanning a total of 2581.57 cM with an average interval genetic distance of 2.22 cM. The LGs were assigned to the 28 chromosomes of Fragaria × ananassa as determined by positioning the sequence tags on F. vesca genome. In addition, seven QTLs namely, qRU-5D, qRU-3D1, qRU-1D2, qRU-4D, qRU-4C, qRU-5C and qRU-2D2 were identified for runner production with LOD value ranging from 3.5-7.24 that explained 22-38% of phenotypic variation. The key candidate genes having putative roles in meristem differentiation for runnering and flowering within these QTL regions were identified. These will enhance our understanding of the vegetative vs sexual reproductive behavior in strawberry and will aid in setting breeding targets for developing perpetual flowering and profuse runnering cultivar.


Assuntos
Cruzamentos Genéticos , Fragaria/genética , Ligação Genética , Genoma de Planta , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
18.
Int J Mol Sci ; 20(4)2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-30791419

RESUMO

Watermelon (Citrullus lanatus) is a nutritionally rich and economically important horticultural crop of the Cucurbitaceae family. Gummy stem blight (GSB) is a major disease of watermelon, which is caused by the fungus Didymella bryoniae, and results in substantial economic losses in terms of yield and quality. However, only a few molecular studies have focused on GSB resistance in watermelon. Nucleotide binding site (NBS)-encoding resistance (R) genes play important roles in plant defense responses to several pathogens, but little is known about the role of NBS-encoding genes in disease resistance in watermelon. The analyzed NBS-encoding R genes comprises several domains, including Toll/interleukin-1 receptor(TIR), NBS, leucine-rich repeat (LRR), resistance to powdery mildew8(RPW8) and coiled coil (CC), which are known to be involved in disease resistance. We determined the expression patterns of these R genes in resistant and susceptible watermelon lines at different time points after D. bryoniae infection by quantitative RT-PCR. The R genes exhibited various expression patterns in the resistant watermelon compared to the susceptible watermelon. Only six R genes exhibited consistent expression patterns (Cla001821, Cla019863, Cla020705, Cla012430, Cla012433 and Cla012439), which were higher in the resistant line compared to the susceptible line. Our study provides fundamental insights into the NBS-LRR gene family in watermelon in response to D. bryoniae infection. Further functional studies of these six candidate resistance genes should help to advance breeding programs aimed at improving disease resistance in watermelons.


Assuntos
Citrullus/genética , Citrullus/microbiologia , Resistência à Doença/genética , Genes de Plantas , Estudo de Associação Genômica Ampla , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Ascomicetos , Cromossomos de Plantas , Éxons , Perfilação da Expressão Gênica , Genoma de Planta , Íntrons , Fenótipo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Domínios Proteicos
19.
Genome ; 62(4): 253-266, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30807237

RESUMO

Broccoli (Brassica oleracea var. italica L.) is a highly nutritious vegetable that typically forms pure green or purple florets. However, green broccoli florets sometimes accumulate slight purplish pigmentation in response environmental factors, decreasing their market value. In the present study, we aimed to develop molecular markers to distinguish broccoli genotypes as pure green or purplish floret color at the early seedling stage. Anthocyanins are known to be involved in the purple pigmentation in plants. The purplish broccoli lines were shown to accumulate purple pigmentation in the hypocotyls of very young seedlings; therefore, the expression profiles of the structural and regulatory genes of anthocyanin biosynthesis were analyzed in the hypocotyls using qRT-PCR. BoPAL, BoDFR, BoMYB114, BoTT8, BoMYC1.1, BoMYC1.2, and BoTTG1 were identified as putative candidate genes responsible for the purple hypocotyl color. BoTT8 was much more highly expressed in the purple than green hypocotyls; therefore, it was cloned and sequenced from various broccoli lines, revealing SNP and InDel variations between these genotypes. We tested four SNPs (G > A; A > T; G > C; T > G) in the first three exons and a 14-bp InDel (ATATTTATATATAT) in the BoTT8 promoter in 51 broccoli genotypes, and we found these genetic variations could distinguish the green lines, purple lines, and F1 hybrids. These novel molecular markers could be useful in broccoli breeding programs to develop a true green or purple broccoli cultivar.


Assuntos
Antocianinas/biossíntese , Brassica/genética , Hipocótilo/anatomia & histologia , Brassica/anatomia & histologia , Clonagem Molecular , DNA de Plantas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Marcadores Genéticos , Hipocótilo/metabolismo , Pigmentação/genética , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA
20.
BMC Plant Biol ; 19(1): 13, 2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30621588

RESUMO

BACKGROUND: Plasmodiophora brassicae is a soil-borne plant pathogen that causes clubroot disease, which results in crop yield loss in cultivated Brassica species. Here, we investigated whether a quantitative trait locus (QTL) in B. rapa might confer resistance to a Korean P. brassicae pathotype isolate, Seosan. We crossed resistant and susceptible parental lines and analyzed the segregation pattern in a F2 population of 348 lines. We identified and mapped a novel clubroot resistance QTL using the same mapping population that included susceptible Chinese cabbage and resistant turnip lines. Forty-five resistant and 45 susceptible F2 lines along with their parental lines were used for double digest restriction site-associated DNA sequencing (ddRAD-seq). High resolution melting (HRM)-based validation of SNP positions was conducted to confirm the novel locus. RESULTS: A 3:1 ratio was observed for resistant: susceptible genotypes, which is in accordance with Mendelian segregation. ddRAD-seq identified a new locus, CRs, on chromosome A08 that was different from the clubroot resistance (CR) locus, Crr1. HRM analysis validated SNP positions and constricted CRs region. Four out of seventeen single nucleotide polymorphisms (SNPs) positions were within a 0.8-Mb region that included three NBS-LRR candidate genes but not Crr1. CONCLUSION: The newly identified CRs locus is a novel clubroot resistance locus, as the cultivar Akimeki bears the previously known Crr1 locus but remains susceptible to the Seosan isolate. These results could be exploited to develop molecular markers to detect Seosan-resistant genotypes and develop resistant Chinese cabbage cultivars.


Assuntos
Brassica rapa/genética , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Brassica rapa/parasitologia , Plasmodioforídeos/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...